Fall 2025-2026
CS491 - Senior Design Project

Project Specification Report

T2526

Ahmed Hatem Haikal - 22001482
Amirhossein Ahani - 22101535
[rfan Hakan Karakog - 22003421
Mehmet Hakan Yavuz - 22002119
Tiirker Koken - 22102331

Supervisor: Anil Koyuncu

Innovation Expert: Haluk Altunel

Contents

1. Introduction

1.1.
1.2. High Level System Architecture & Components of Proposed Solution

1.3.

1.4.

L.5.

Description

1.2.1. Frontend Layer
Consensus Displayer
Persona Customizer
Task Customizer
1.2.2. Backend Layer
Consensus Controller
Persona Creator
Task Creator
1.2.3. API Layer
LLM API
Data Scraping API
1.2.4. Storage Layer
Prompt Created Personas
Scraped Data Created Personas
Scraped Data
Constraints
1.3.1. Implementation Constraints
Dependency on External LLM Providers
Asynchronous Multi-Agent Execution Complexity
Frontend—Backend Contract
Limited Local Storage and Persona Management
Scraping & Data Processing Constraints
Local Hardware & Development Environment
Security & Privacy Safeguards
Limited Team Size and Development Timeline
1.3.2. Economic Constraints
Limited Budget
Hardware Overhead
Cost of API Integrations
Licensing
1.3.3. Ethical Constraints
Professional and Ethical Issues
1.4.1. Data privacy and Consent
1.4.2. Bias Possibility and Fair Representation
1.4.3. Misinterpretation of Consensus
1.4.4. Accountability and Transparency
1.4.5. Ethical Persona Simulation
Standards

2. Design Requirements

O O O 0 0 0 1 9 9 9 9 9 9 9 9000 v v

el e e e e T e T e S e e e e e e
W W NN NN == === 0 O O O O

2.1. Functional Requirements

2.2. Non-Functional Requirements
2.2.1. Usability
2.2.2. Reliability
2.2.3. Performance
2.2.4. Supportability
2.2.5. Scalability

3. Feasibility Discussions
3.1. Market & Competitive Analysis

3.1.1. Existing Tools and Rival Companies:

3.1.2. Competitive Gap:
3.2. Academic Analysis
4. Glossary
5. References

13
14
14
14
14
15
15
16
16
16
17
18
19
20

1. Introduction

1.1. Description

This project aims to create customizable large language model personas [1],
[2] that can be used at completing any sort of task regarding Software
Engineering. Our application will provide an environment for users to create
their own tasks, allowing them to test the reliability of the application by

comparing the results to a real dataset.

1.2. High Level System Architecture & Components of

Proposed Solution

Frontend
Consensus Persona Task Customizer
Displayer Customizer
A ~
] !]
'
'
'
]
\ Backend !
APls ! ' ! Storage
: i L
2% . v , v
LLMAR Dala Scraping [] [] P
API Consensus Persona Creator Task Creator Prompt Created Scraped Data Scraped Datas.
Controller Personas Created Persanas.
A U T Y I e I R B et
P S
,,,,,,,,,,,,,,,,,,,,,,,

1.2.1. Frontend Layer

Consensus Displayer

Displays the consensus created by the cooperation of backend design and LLM
APL

Persona Customizer

Allows users to create personas using different methods. Users can create
personas just using prompt, they can choose to upload CV or they can use data
scraping method to create more detailed persona. Users can modify the existing
personas’ names. Users can also remove personas which will trigger the backend

to delete personas from the database.
Task Customizer

Allows users to upload files and define the task, which then will be asked to

personas to complete.

1.2.2. Backend Layer

Consensus Controller

Creates the correct environment and details for what judge LLM should care

about when deciding the consensus of the discussion.
Persona Creator

Connects personas from the frontend to the database when changing, modifying

or removing personas.
Task Creator

Connects tasks from the frontend to personas for them to perform the task.

1.2.3. API Layer
LLM API
Allows receiving and sending of data between LLM and backend [1], [2].
Data Scraping API

Allows scraping data from the internet to have a database for persona creation

13].

1.2.4. Storage Layer

Prompt Created Personas

Stores all prompt based created personas.
Scraped Data Created Personas

Stores all scraped data based created personas.
Scraped Data

Stores all scraped data from the internet, then to pass it to create personas perhaps

multiple times.

1.3. Constraints

1.3.1. Implementation Constraints

The implementation of Consensia is influenced by several technical limitations
stemming from architectural decisions, technology stack, and available
computational resources. These constraints define what is realistically achievable
in the development timeline and influence both system performance and design

choices.

Dependency on External LLM Providers

The system relies heavily on external APIs such as Google Gemini [2], OpenAl
[1], and potentially other third-party Al services.
Because these models run fully on cloud endpoints rather than locally:

e Stable internet connectivity is required for all debate and persona generation

Processes.

e Backend processing speed is limited by API response times, rate limits, and

quota.

e Any change in API availability, pricing, model versions, or request/response

formats may require code refactoring.
Asynchronous Multi-Agent Execution Complexity

The debate pipeline requires:

e Multiple persona prompts,

e Sequential message passing,

e Judge evaluation,

e Asynchronous LLM calls.
similar to multi-agent LLM workflows studied in recent research [3], [4].
This introduces constraints such as:

e Increased complexity in request orchestration,

e Requirement for async-safe code on backend (FastAPI + asyncio),

e Risk of race conditions or partial failures if one persona fails to respond.
Frontend—Backend Contract

The system requires strong consistency between:
e Persona schemas,

e Task schemas,

e Consensus request formats.

Because the backend validates all input using Python Pydantic schemas [6] :

e Any minor schema modification requires synchronized updates on the
frontend.

e Mismatches between versions can cause request rejections or failed debates.
Limited Local Storage and Persona Management

Persona creation from:
e Prompts,
e C(Vs,
e Scraped data

requires storage and indexing.

Constraints:
e Storing raw documents (CVs, scrape data) increases disk requirements.
e Persona regeneration from large scraped datasets may be slow.

e Database must maintain consistency between personas, tasks, and debate logs.
Scraping & Data Processing Constraints

The scraping API introduces [3]:
e Restrictions from website anti-bot measures,
e Rate limitations and CAPTCHAs,
e Ethical rules preventing scraping of restricted/private content,
e Inconsistent formatting in external sources requiring preprocessing.

This limits the speed and reliability of data-driven persona creation.
Local Hardware & Development Environment

Since multi-agent interactions can require multiple LLM calls per debate,
development environments face limitations such as:
e Increased latency when running many personas,
e Long-running async tasks during testing,

e High costs and time delays when debugging LL.M behavior.

Developers often need:

e Stable network,

e Sufficient CPU/RAM for running backend + frontend + development tools,

e Keep-alive servers to prevent timeouts during multi-round debates.
Security & Privacy Safeguards

Handling user-uploaded CVs and documents requires:
e Sanitizing all inputs,
e Preventing raw file execution,

e Ensuring no harmful content is passed between personas and judge.

These constraints limit:
e Full freedom of persona creation,
e File formats supported (e.g., PDF, DOCX but not executable files),

e Ability to store long-term raw personal data.
Limited Team Size and Development Timeline

As a student project with a fixed timeline:

e Implementation must favor modular, simple, maintainable components,

e Certain advanced features (distributed workers, cloud autoscaling, heavy
scraping) must be simplified,

e Optimization is limited to what is feasible within academic deadlines.

1.3.2. Economic Constraints

Limited Budget

The project is conducted by a team of college students, limiting the budget of the
project. The budget allocation for the project will be carefully planned, tracking
and minimizing costs as necessary. We will also seek external funding from

sources like ‘Microsoft for Startups’ [7].

Hardware Overhead

The application has a computationally intense process when running multiple
LLMs which are all roleplaying and generating refined responses. As such, the
user may be required to have strong hardware to run it. This process will be
optimized to reduce computational overhead, to have a program suited to run in

less advanced environments.
Cost of API Integrations

The application regularly executes LLM API calls such as the Gemini API [2],
and may use other APIs like SerpAPI (Google Search API), significantly

increasing operating cost of the project [3].
Licensing

The project will utilize various already existing technical tools like labeled
datasets, which can often come with commercial licenses. We will carefully
consider the licensing costs and choose which services are worth investing in,

while utilizing open-source and academically licensed works as much as possible.

1.3.3. Ethical Constraints

The project will operate within ethical boundaries, and comply with legal
restrictions. The system will only use data that is voluntarily provided and avoid
sensitive and personal information. These constraints are further discussed in the

subsections under “Professional and Ethical Issues” section.

1.4. Professional and Ethical Issues

1.4.1. Data privacy and Consent

Sources such as CV's, research papers, or scraped contents to build a persona
might violate privacy expectations unless the data is publicly available or reached

by consent of a real person. Even publicly available data (LinkedIn, GitHub,

academic websites) requires ethical considerations if the individuals did not
explicitly consent to being modeled by Al. The system must ensure GDPR-style

principles such as purpose limitations and storage security [8].

1.4.2. Bias Possibility and Fair Representation

Created personas might misrepresent the intended individual unless the
description process is thoroughly shaped, as persona-based behavior can vary
significantly between models [9]. Seniority-based stereotypes might create a
biased environment (overestimating a professor's rigidity or underestimating a
junior CS student's knowledge). Since the created personas debate and come with

a consensus, biased personas might negatively affect the trust-worthy result.
1.4.3. Misinterpretation of Consensus

Users must be informed that; reached consensus is not an authoritative technical
truth, disclaiming:

e Consensus is not guaranteed to be correct.

e Personas are simulated creations, not real experts in the field.

e The product should not be taken as the only authority for critical software

decisions in sensitive fields.

1.4.4. Accountability and Transparency

The system must ensure accountability and transparency to users by providing
what data is used to create a persona, how personas debate and the insights of
created personas initial thoughts on a given question, and the consensus

reasoning.
1.4.5. Ethical Persona Simulation

During persona creation process possible harmful or offensive inputs that result
with violative outputs must be avoided. For simulating real individuals, avoiding

impersonation must be ensured.

1.5.

Standards

The project must comply with ethical and technical standards that ensure safe
handling of personal data, transparent model behavior, and responsible use of real
individuals’ information when generating personas. All CV-based personas must
be created with explicit consent, and any sensitive data must be minimized,
anonymized, or excluded where possible [8]. The system should avoid
reinforcing biases, ensure fairness across personas, and prevent harmful or
misleading outputs during multi-agent debates. It should also maintain clear
boundaries between real individuals and their simulated personas, ensuring that
generated behaviors are probabilistic approximations rather than definitive
representations. Finally, the platform must follow general software engineering
best practices such as reliability, auditability, data security, and version-controlled

experimentation to support trustworthy consensus generation.

2. Design Requirements

2.1.

Functional Requirements

e The user can register to the system and sign in.

e The user can create custom personas by giving desired prompts and/or give

relevant documents such as CVs, academic documents, LinkedIn/Github

profiles etc. and customize the avatar of each created persona.

e The user can deactivate any persona, and edit or permanently delete the

custom personas they created.

e The system will provide default personas as presets for the user to add to their

active pool of personas.

e The user can enter their prompt into a text area to start the debate process,

creating the environment with the active personas in the pool.

e The user can run the debate by clicking a button.

o The system returns the individual responses of each persona and the final

consensus of the judge LLM with reasoning.

2.2,
2.2.1.

2.2.2.

The backend shall process requests from the frontend and return appropriate
responses.

The backend validates all incoming data for type and format correctness.

The backend connects to LLM APIs (Gemini etc.) to process user prompts [1],
[2].

The system logs all requests and responses for debugging and audit purposes.

The frontend displays data dynamically fetched from the backend.

Non-Functional Requirements

Usability
The system interface must be intuitive and accessible so all users from all age
groups and technical expertise can use it
Persona creation, task definition, and debate execution must require minimal
steps and should be clearly guided by Ul elements.
The system must provide a clear and separate visual representation between
the Persona’s responses, judge reasoning and final consensus.
Error messages must be descriptive and thorough, it should suggest corrective
actions and guidance (e.g., invalid file format, missing fields).
The platform must support responsive design for all different platforms and
resolutions like desktop, mobile, etc.

Reliability
The system should produce consistent and reproducible outputs when the same
personas and tasks are provided, it ensures that the backend has a deterministic
logic and is not random every time.
Backend services must handle any unexpected failures without any problems,
with fallback mechanisms for API timeouts, LLM unavailability, or
malformed user inputs.
All Persona data, logs, and debate histories must be persistently stored and
remained intact across system restart in our database.
System reliability must ensure that the debate cycle (persona responses —
judge — consensus) completes without any interruption under typical usage

loads and sessions.

2.2.3.

2.2.4.

2.2.5.

Performance

Persona creation, task parsing, and system response times should remain
within acceptable latency, ideally returning results in maximum a few seconds
depending on the LLM API response times.
The system must handle multiple personas and multi-round debates without
any significant degradation and delays in responsiveness.
The Frontend interactions, including loading personas and rendering
consensus and results, must remain responsive under usage conditions
To minimize unnecessary LLM API calls we must use efficient caching or
throttling mechanisms to reduce overall response time and increase
performance.

Supportability
The system should be maintainable with modular architecture, enabling any
updates or changes to individual components (e.g., LLM API handler,
persona generator).
All components must be well documented, including backend APIs, persona
creation pipeline, and database schema.
The system should allow developers to integrate new LLM providers or
update model versions with minimal architectural changes [1], [2].
Logs must be structured and accessible for debugging system audits, and
experiment reproducibility.
Clear separation between development, testing, production environments must

be maintained.
Scalability

The platform must support scaling to multiple personas, larger debate sizes,
and more complex tasks without requiring major redesigns and architectural
changes.

Backend architecture must support horizontal scaling (e.g., multiple worker
instances handling requests concurrently) when deployed in cloud
environments, this is where we increase the power of our system (using
servers maybe) to have better performances

Storage design must accommodate increasing volumes of data like Persona,

debate logs, and user-uploaded materials.

e The system should be capable of handling more computationally intensive
scenarios (e.g., multiple LLM calls per persona, long-form reasoning) using
batch processing or asynchronous request handlers.

e The architecture must enable the developers to be able to integrate distributed
computing or external task queues in the future (e.g., Celery, Cloud Tasks) if

required for high-load scenarios and intensive work.

3. Feasibility Discussions

3.1.

Market & Competitive Analysis

This application aims to assess the reasoning, role-playing, and interaction skills
of large language models (LLMs) [1], [2], primarily targeted at researchers and
developers looking to benchmark LLM performance in simulated multi-agent
interactions, a concept explored in recent studies [4], [5]. Current options mainly
concentrate on single-agent evaluations, conversational Al systems, or versatile
chatbots, creating a void for organized, multi-agent role-playing and reasoning
tests. The project creates a controlled setting for various LLMs to engage with
specified personas, enabling users to assess reasoning, adaptability, and emerging
behaviors, fulfilling the demand for more advanced evaluation instruments. Its
significance is in facilitating empirical research and comparative evaluations,
which can guide Al advancement, optimization strategies, and model assessment.
This establishes the project as a targeted instrument in the expanding Al research

infrastructure sector, providing important insights distinctive to this platform

3.1.1. Existing Tools and Rival Companies:

While many tools are available in Al-assisted software engineering, the majority
emphasize single-agent interactions, code generation, or code review instead of

multi-agent reasoning. Several significant instances consist of:

e GitHub Copilot / Copilot Environment
A robust individual coding assistant that produces code and clarifies

modifications [10].

Nonetheless, it lacks support for various personas, role-oriented discussions, or

consensus processces.

e (CodeAgent (Research Initiative)
A multi-agent framework centered on automated code evaluations utilizing
dedicated LLM agents.Its range is restricted to assessing code changes and does

not encompass business personas, students, architects, or reasoning across roles.

e CodePori (Research Initiative)

A multi-agent system that creates complete software projects based on

requirements.

It emphasizes code generation rather than discussions influenced by personal

views or assessments of reasoning.

e ChatGPT Group / Claude Materials
General-purpose conversational platforms can mimic roles through prompts, yet

they only enable single-agent reasoning and miss structured debate, judgment

modules, or ongoing persona modeling

3.1.2. Competitive Gap:

Among these tools, the absent elements are:

) Precise persona development according to career stage
(student — junior — senior — architect).

e Organized multi-agent discussion with defined roles.

e Judge LLM assessing reasoning excellence and generating a conclusive
agreement.

e Benchmarking and replicability for research and empirical investigations.

e Assistance for non-technical positions (PM, Finance, Operations), providing a
wider perspective.
This gap establishes Consensia as a distinctive and specialized platform in the

developing field of AI assessment and multi-agent reasoning for software

engineering.

3.2

Academic Analysis

This research adds to academic knowledge by examining how organized
interactions between large language model personas can enhance reasoning
effectiveness in software engineering activities, building upon recent multi-agent
LLM frameworks [4], [5]. Although current LLM studies mainly assess outputs
from a single agent, Consensia explores if debate, disagreement, and consensus
techniques produce more trustworthy and understandable outcomes.

A fundamental scholarly contribution is the structured approach for creating
authentic personas through prompt engineering and role modeling, aligning with
findings on persona-driven LLM behavior [9]. This enables the assessment of
whether personas reflecting varying seniority levels (e.g., 3rd-year computer
science students versus 10-year engineers) generate unique reasoning patterns
consistent with human expertise distributions.

The initiative also incorporates a judge LLM tasked with evaluating persona
results, spotting discrepancies, and forming a consensus. Examining this judicial
procedure offers understanding into LLM interpretability, bias transmission, and
multi-agent dependability — subjects currently examined in ongoing LLM
investigations [5].

Moreover, the system facilitates reproducible benchmarking by saving each

debate as a session. This facilitates regulated testing on:

° the impact of personas on the quality of reasoning,

° the impact of structured debates on accuracy,

° how consensus measures against ground-truth datasets,

° and if disagreements among agents forecast model uncertainty.

Ultimately, the platform permits ablation studies, enabling researchers to
deactivate specific persona traits, prompting styles (e.g., CoT vs. non-CoT), or

LLM setups to analyze their effects on reasoning. This provides a consistent and

scalable structure for examining role-oriented reasoning, consensus creation, and
multi-agent LLM actions — a developing and largely overlooked area in Al

investigation.

4. Glossary

API: Application Programming Interface
Al Atrtificial Intelligence

LLM: Large Language Model

CV: Curriculum Vitae

GDPR: General Data Protection Regulations

5. References

[1] OpenAl, “GPT-4 Technical Report,” 2024. [Online]. Available:

https://openai.com

[2] Google DeepMind, “Gemini: A Family of Highly Capable Multimodal
Models,” 2024.

[3] SerpAPI, “Google Search API Documentation,” 2024. [Online]. Available:
https://serpapi.com

[4] A. Yang, Y. Bai, et al., “Large Language Model Agents,” arXiv preprint
arXiv:2401.11016, 2024.

[5] C. Chen, S. Zhao, et al., “Multi-Agent Debate Improves Reasoning in LLMs,”
arXiv preprint arXiv:2305.14387, 2023.

[6] Pydantic Developers, “Pydantic v2 Documentation,” 2024. [Online].
Available: https://docs.pydantic.dev

[7] Microsoft, “Microsoft for Startups Founders Hub,” 2024. [Online]. Available:
https://www.microsoft.com/startups

[8] European Union, “General Data Protection Regulation (GDPR),” Official
Journal of the European Union, 2016.

[9] R. Xu, X. Li, et al., “Persona-Based Evaluation of LLM Behavior,” arXiv
preprint arXiv:2403.01245, 2024.

[10] GitHub, “GitHub Copilot Technical Documentation,” 2024. [Online].
Available: https://docs.github.com/en/copilot

	1.​Introduction
	1.1.​Description
	1.2.​High Level System Architecture & Components of Proposed Solution
	1.2.1.​Frontend Layer
	Consensus Displayer
	Persona Customizer​
	Task Customizer

	1.2.2.​Backend Layer
	Consensus Controller
	Persona Creator
	 Task Creator

	1.2.3.​API Layer
	LLM API
	Data Scraping API

	1.2.4.​Storage Layer
	Prompt Created Personas
	Scraped Data Created Personas
	Scraped Data

	1.3.​Constraints
	1.3.1.​Implementation Constraints
	Dependency on External LLM Providers
	Asynchronous Multi-Agent Execution Complexity
	Frontend–Backend Contract
	Limited Local Storage and Persona Management
	Scraping & Data Processing Constraints
	Local Hardware & Development Environment
	Security & Privacy Safeguards
	 Limited Team Size and Development Timeline

	1.3.2.​Economic Constraints
	Limited Budget
	Hardware Overhead
	Cost of API Integrations
	Licensing

	1.3.3.​Ethical Constraints

	1.4.​Professional and Ethical Issues
	1.4.1.​Data privacy and Consent
	1.4.2.​Bias Possibility and Fair Representation
	1.4.3.​Misinterpretation of Consensus
	1.4.4.​Accountability and Transparency
	1.4.5.​Ethical Persona Simulation

	1.5.​Standards

	2.​Design Requirements
	2.1.​Functional Requirements
	2.2.​Non-Functional Requirements
	2.2.1.​Usability
	2.2.2.​Reliability
	2.2.3.​Performance
	2.2.4.​Supportability
	2.2.5.​Scalability

	3.​Feasibility Discussions
	3.1.​Market & Competitive Analysis
	3.1.1. Existing Tools and Rival Companies:
	3.1.2. Competitive Gap:

	3.2.​Academic Analysis

	4.​Glossary
	5.​References

